CONNECT WITH US
Thursday 23 October 2025
APD: Technology-Driven Innovation Powering Global Growth
In the fiercely competitive global power supply and renewable energy industries, Asian Power Devices Inc. (hereafter "APD") stands at the forefront of Taiwan's power sector. Backed by strong innovation and R&D capabilities and a distinctive organizational culture, APD continues to lead the market. As the company faces challenges from industrial upgrades, international market expansion, and business scale growth, APD leverages a highly efficient, innovation-driven team to advance organizational evolution, strengthen its competitive edge, and capture industry attention
Wednesday 22 October 2025
Secure Flash Memory : The Cornerstone of Next-Generation Cybersecurity Standards
As digitalization penetrates every industry-whether in cloud computing, telecommunications infrastructure, automotive electronics, or IoT devices-the security of hardware platforms is no longer an isolated concern of a single sector, but a common challenge faced by all critical infrastructures. In the past, the focus of cybersecurity was largely placed on software.However, as attack methods continue to evolve-from supply chain infiltration and firmware tampering to chip-level exploits-the security and resilience of hardware have come to be recognized as a fundamental cornerstone of modern security architectures. At the heart of this shift, Secure Flash Memory is increasingly emerging as the critical enabler across diverse application domains.Secure Flash Memory is becoming the common language of cybersecurity across industries.Credit: WinbondEvolution of International Standards: Hardware and Firmware Security FrameworksIn recent years, international standards and certification frameworks for hardware and firmware security have gradually formed a tightly interwoven network. Among them, the NIST SP 800-193 Platform Firmware Resiliency (PFR) Guidelines established by the U.S. National Institute of Standards and Technology clearly define three core capabilities: detection, protection, and recovery.These requirements mandate that platforms be capable of identifying anomalies, blocking unauthorized updates, and securely restoring firmware when necessary. Initially widely adopted in servers and networking equipment, SP 800-193 is now regarded as a cornerstone for defending against firmware-level attacks.However, relying on a single framework alone is insufficient to address the diversity of application scenarios. To provide a more flexible and scalable approach that covers varying product types and market demands, the Security Evaluation Standard for IoT Platforms (SESIP) was introduced. Designed specifically for IoT and embedded platforms, SESIP emphasizes a modular approach to security evaluation.By decomposing security functionalities into reusable security claims, SESIP not only improves certification efficiency but also allows manufacturers to reuse existing security assets across product lines, avoiding the need to start from scratch for each market-specific requirement. This flexibility has made SESIP a critical tool in today's rapidly expanding landscape of IoT and smart devices.To learn the latest cybersecurity regulations and trends, download the hardware security whitepaper for free.The Convergence of Industry Standards: Common Criteria, FIPS 140-3, and ISO/SAE 21434At the same time, other international security frameworks continue to exert their influence. Common Criteria (ISO/IEC 15408) remains one of the most widely recognized global security evaluation systems, providing stringent assurances for smart cards and critical infrastructure devices. FIPS 140-3, mandated by the U.S. government, sets clear requirements for the security of cryptographic modules, covering encryption, key management, and physical protections, and has been broadly adopted in finance, government, and cloud services.Additionally, ISO/SAE 21434, originally designed for the automotive sector, introduces a risk-based approach to cybersecurity lifecycle management. While its initial focus was on automotive electronics, its methodology is increasingly being extended to other safety-critical domains, highlighting the growing convergence of cross-industry security standards.Though these standards originate from different perspectives, they share a common foundation: ensuring the establishment of a Root of Trust, safeguarding firmware and cryptographic keys against tampering, and enabling systems to recover quickly after an attack.This is precisely where secure flash memory demonstrates its value. The latest generation of secure flash memory devices typically integrate multiple security mechanisms, such as secure boot support, immutable key storage, hardware-based authentication, and cryptographic accelerators.These features allow secure flash memory not only to meet the firmware integrity requirements of NIST SP 800-193 but also to align with the cryptographic module protections defined in FIPS 140-3 and to complement the modular security claims of SESIP. In other words, secure flash memory is not just a solution for one certification, but rather a bridge across multiple international standards.Practical Applications: Secure Flash Memory in Different Industry SegmentsFor example, in the server domain, secure flash memory ensures that both BIOS and BMC firmware are verified during startup, blocking any unauthorized modifications in real time-a direct embodiment of PFR principles. In IoT devices, the same memory can be evaluated through SESIP, modularizing secure updates and key management, thereby enabling shared security foundations across different product lines.In financial services or cloud platforms, the built-in cryptographic engines of secure flash memory directly support the requirements of FIPS 140-3, providing a trusted environment for key storage. In automotive electronics, these memories can be incorporated into the threat modeling and risk management frameworks outlined in ISO/SAE 21434, supporting end-to-end lifecycle security management.Secure Flash Memory as the Engine of Cross-Industry Digital TrustIt can therefore be said that the role of secure flash memory has moved far beyond being a mere data storage component; it has become the tangible foundation of a system’s Root of Trust. It is the essential vehicle through which security standards are realized and the shared language that enables cross-industry collaboration. As industries worldwide continue to raise the bar for cybersecurity, the ability to effectively integrate and align with multiple international standards will determine whether products can successfully enter the market and earn end-user trust.Looking ahead, as supply chain security challenges intensify—from manufacturing to system integration to end applications—the demand for security will only continue to grow. With its unique ability to span across multiple standards, secure flash memory is poised to remain the cornerstone of digital trust in industry. It is not merely a technological option, but a strategic necessity for companies seeking to maintain competitiveness and compliance in the global marketplace.To learn more about Winbond's advanced security solutions, visit Winbond's website or contact Winbond directly, or download the latest Hardware Security White Paper.
Wednesday 22 October 2025
Blockchain Integration Reshapes Mobile Gaming Platforms
Blockchain technology is steadily reshaping mobile gaming, introducing new systems for payments, fairness and transparency. As decentralized finance expands into consumer services, gambling platforms are emerging as an example of how blockchain can alter both digital infrastructure and user experience. The rise of digital assets is now most visible in the growth of mobile crypto casino platforms, which illustrate how blockchain is merging with on-the-go entertainment.The Evolution of Mobile Gaming and Cryptocurrency IntegrationOver the last few decades, the shift in mobile gaming has been unprecedented due to the accessibility of powerful smartphones and the widespread availability of the internet. Mobile gaming is now the primary means of digital gaming in developed and emerging markets, capturing the most gaming revenue in 2024.Cryptocurrency has rapidly expanded and is now widely used for many transactions. In 2024, approximately $40.9 billion of illicit transactions within the crypto space were conducted, mostly using stablecoins. Although the figure reflects illicit activities, it demonstrates how powerful blockchain technology is.The integration of these industries has facilitated the development of mobile crypto casino platforms. Users replacing traditional fiat casino transactions with Bitcoin and other cryptocurrencies have made international transactions almost instant. The reduction of delays because of traditional banking has made it quite appealing to mobile crypto casino users.Blockchain as Infrastructure for Transparency and TrustUsing blockchain technology in the crypto gaming industry increases trust and confidence in transactions, which is a common challenge in the crypto gaming industry. Automated deposits and withdrawals of crypto can expose the illicit activities of a casino. Blockchain technology can provide real-time transparency, thus building trust for players in the gambling sitePlayers can check the fairness of gambling games through "provably fair" systems. Distributed ledger technology (blockchain) improves auditability in gambling. Unlike traditional gambling systems, where payments are settled in days, blockchain gambling payments are settled in minutes, particularly useful in regions where digital payments are embedded with middlemen.Global Growth and Regulatory ConsiderationsThe global gambling market is uneven due to blockchain technology. In North America, regulatory restrictions at the state level reduce the likelihood of widespread adoption. European and Latin American countries are using controlled regulatory sandboxes to test and monitor the technology. The Philippines has digitized its licensing system and Australia is adapting its regulations to mobile-first systems.According to Grand View Research, the latest data indicates the online gambling market is currently valued at 78.66 billion dollars and is projected to reach 153.57 billion dollars by 2030, reflecting an almost 12 percent annual growth. This means that the online casino market is projected to grow from 19.11 billion dollars in 2024 to 38 billion dollars by 2030. This means that blockchain-enabled platforms will positively impact the overall growth of the market, with the limit being the regulators' actions towards new emerging technologies.Market Adaptation and Case StudiesAdaptation across the sector has culminated in mobile-first cryptocurrency convergence. The growing cryptocurrency blockchain payment networks will be integrated with entertainment systems, reflecting a shift in consumer expectations toward quick, transparent services.For developers and analysts, there are both opportunities and challenges. There is demand for quicker and less restricted services, but also compliance issues, cybersecurity threats and the absence of international laws. The ability to weigh user convenience against operational resilience will determine long-term profitability.The absence of definitive answers does not change the reality that mobile crypto casinos are a growing trend. They are a test of blockchain technology in consumer markets and a demonstration of how mobile technology and digital currency combine to provide services that are transparent, effective and scalable.However, regardless of which tools or platforms seem most promising, careful evaluation is essential before taking action. Success in this space depends not only on innovation, but on understanding the legal, technical, and ethical implications of each solution.Blockchain Integration Reshapes Mobile Gaming Platforms. Pexels
Wednesday 22 October 2025
The Packaging Pivot Driving AI Chip Performance
Artificial intelligence (AI) is reshaping the semiconductor landscape-both as a fast-growing end market and as a catalyst for innovation across mobile, automotive, networking, industrial and beyond. Taiwan's industry leaders are at the forefront of this transformation, proactively developing next-generation packaging technologies critical to AI semiconductor content.AI workloads are driving demand for specialized chip architectures that can process massive amounts of data quickly and efficiently. In data centers, high-performance AI chips-such as GPUs or AI accelerators-support large-scale model training and inference for applications like AI chatbots. At the edge, devices rely on high-efficiency chips like NPUs to enable real-time decision-making in applications such as autonomous vehicles, smart cameras and mobile devices.This shift in computing architecture depends on advanced packaging. By enabling higher performance and power efficiency through a tighter integration of compute and memory, advanced packaging supports the sophistication and scale of modern AI chips. Taiwan's expertise in advanced packaging and its expansive semiconductor supply chain are accelerating this shift.Why Heterogeneous Integration is Key to PerformanceMoore's Law scaling is becoming more expensive due to the complexity needed to keep increasing transistor counts. As a result, innovation is diversifying. Technologies like high numerical aperture extreme ultraviolet (high-NA EUV) lithography and new transistor designs such as gate all around (GAA) continue to push traditional scaling. Developments with backside power delivery (BPDN) are improving overall raw performance by providing a more stable power supply. Breakthroughs in semiconductor packaging are now playing an increasingly pivotal role.Semiconductor packaging has evolved beyond protecting and connecting chips to powering device performance. At the heart of this shift is heterogeneous integration-the ability to combine multiple chips or chiplets in a single package. This modular approach offers a flexible, cost-effective way to integrate diverse functions in packaging instead of on a single chip, to meet requirements without relying solely on traditional scaling.Advanced Packaging Technologies Enabling AIAI chips are growing in complexity, with some expected to contain up to a trillion transistors per package by the end of the decade. Advanced packaging supports this growth through system-level integration of compute and memory.High bandwidth memory (HBM) plays a key role. By stacking memory vertically and placing it close to the GPU, HBM reduces latency and boosts data transfer speeds while lowering power consumption. Interposers and substrates facilitate efficient communication between components. In many modern AI designs, hundreds of logic and memory chips are integrated into a single high-value package to meet specifications.Credit: KLATo support the growing architectural demands and evolving semiconductor chip requirements, the industry is advancing 2D, 2.5D and 3D packaging architectures-where 2D places chips side-by-side on a substrate, 2.5D arranges them on an interposer and 3D stacks them vertically. Technologies like hybrid bonding, embedded bridges, wafer- and panel-level interposers, glass core substrates and co-packaged optics help to increase interconnect density and improve system performance. These innovations provide new ways to shorten signal paths to increase bandwidth and reduce power loss-critical for AI workloads.Advanced Packaging Innovation Brings Manufacturing ChallengesAs packaging complexity increases, so do manufacturing challenges. More chip designs per package, larger die sizes, smaller features, denser interconnects and new materials all raise the bar for packaging yield management.Credit: KLAWith more components and interconnects placed into a single package, the number of potential failure points increases. A single chip or interconnect defect can compromise the entire multi-die package-resulting in costly yield loss. In this environment, tighter process control becomes essential to ensure high yield and reliability.Heterogeneous integration brings challenges similar to those found in front end semiconductor manufacturing, demanding greater defect sensitivity and tighter metrology precision. KLA addresses these challenges with a comprehensive portfolio of advanced packaging process control and process-enabling solutions-for wafers, panels and components – designed to scale advanced packaging complexity without compromising quality.Evolving 2.5D and 3D packaging architectures create new yield challenges that need improved process and process control solutions.Credit: KLAAI Needs Intelligent IntegrationThe semiconductor industry is anticipated to reach US$1 trillion globally by 2030, according to PwC in November 2024, driven by a wide range of applications-including the rapid growth of AI from data centers to edge devices. AI demands high compute capacity with optimized power use, pushing the boundaries of semiconductor chip design and integration. Taiwan’s semiconductor manufacturers welcome these opportunities.It's widely recognized that 90% of the world's advanced semiconductors are produced in Taiwan, contributing to a combined semiconductor output value that exceeded NT$5 trillion in 2024, up 22.4% from 2023, according to statistics released by the Industrial Technology Research Institute (ITRI). Global demand for AI chips is surging.AI is also driving a diversification of semiconductor content. Wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) provide higher power density, faster switching, and better thermal efficiency than silicon, making them increasingly important for efficient power delivery in AI systems.In data center and HPC environments, AI growth is also pushing development in photonics and co-packaged optics for network switches to improve data transfer speeds and energy efficiency. Quantum computing, still in early stages, could eventually reshape how complex AI workloads are processed.Across these domains, advanced packaging serves as the foundation for uniting diverse technologies into compact, high-efficiency systems. Taiwan technology leaders are driving this advanced packaging innovation, and KLA is proud to serve as their collaborative partner.2025 marks the 35th anniversary of KLA's operations in Taiwan. Headquartered in the United States, KLA is a global leader in semiconductor inspection and metrology, with over 15,000 employees worldwide. The expertise and insights cultivated at KLA Taiwan over three decades, in partnership with our valued customers, underscore a commitment to technical excellence in the AI era-when chip manufacturing requirements are more complex and challenging than ever before.The future of semiconductors isn't just about smaller transistors – it's about smarter integration. Packaging has become essential to performance. At the boundaries of Moore's Law, advanced packaging has emerged as the key to meeting next-generation semiconductor device requirements.With deep expertise in process, process control and customer collaboration, KLA is helping the semiconductor industry build what comes next. As AI redefines what's possible, the technologies that support it must evolve just as rapidly. KLA's dedicated team of engineers, physicists and data scientists embraces the scale and significance of this transformation, helping shape the future of semiconductor innovation in the AI age-where advanced packaging plays a pivotal role.